Introduction to Game Theory

Ling-Chieh Kung

Department of Information Management National Taiwan University

August 19, 2021

Why game theory?

- Industrial engineers and operations researchers optimize the performance of systems.
 - ▶ Many systems have **multiple decision makers** involved.
 - Competing retailers in a market.
 - Entities in a supply chain.
 - ▶ Deliverers and consumers on a food delivery platform.
 - Companies bidding for 5G bandwidth.
 - ▶ Voters and candidates in an election.
- ► To model the interaction among multiple decision makers, game theory helps people design **better mechanisms or policies**.

Introduction

- ► Today we introduce **game-theoretic modeling**.
- ▶ We will introduce **static** and **dynamic** games.
 - ▶ Static games: All players act simultaneously (at the same time).
 - ▶ Dynamic games: Players act sequentially.
- ▶ We will illustrate the **inefficiency** caused by decentralization (lack of cooperation).
 - With the concept of **price of anarchy**.
- We will show how to solve a game, i.e., to predict what players will do in equilibrium.

Road map

► Static games.

Prisoners' dilemma.

- Nash equilibrium.
- Cournot competition.
- ▶ Dynamic games: Backward induction.
- Pricing in a supply chain.

Static games	Dynamic games	Price of anarchy	Equilibrium concepts
0●000000000000000	000000000000000	00000000	00000

Prisoners' dilemma: story

- ▶ A and B broke into a grocery store and stole some money. Before police officers caught them, they hided those money carefully without leaving any evidence. However, a monitor got their images when they broke the window.
- ► They were kept in two separated rooms. Each of them were offered two choices: **Denial or confession**.
 - If both of them deny the fact of stealing money, they will both get one month in prison.
 - ▶ If one of them confesses while the other one denies, the former will be set free while the latter will get nine months in prison.
 - ▶ If both confesses, they will both get six months in prison.
- They cannot communicate and they must make their choices simultaneously.
- ▶ All they want is to be in prison as short as possible.
- ▶ What will they do?

Static games	Dynamic games	Price of anarchy	Equilibrium concepts
000000000000000	000000000000000	00000000	00000

Prisoners' dilemma: matrix representation

▶ We may use the following matrix to formulate this "game":

	Player 2		
		Denial	Confession
Player 1	Denial	-1, -1	-9,0
	Confession	0, -9	-6, -6

- ▶ There are two **players**, each has two possible **actions**.
- ▶ For each combination of actions, the two numbers are the utilities of the two players: the first for player 1 and the second for player 2.
- Prisoner 1 thinks:

- "If he denies, I should confess."
- "If he confesses, I should still confess."
- "I see! I should confess anyway!"
- ▶ For prisoner 2, the situation is the same.
- ▶ The **solution** (outcome) of this game is that both will confess.

Equilibrium concepts 00000

Prisoners' dilemma: discussions

- ▶ In this game, confession is said to be a **dominant strategy**.
- ▶ This outcome can be "improved" if they can **cooperate**.
- **Lack of cooperation** can result in a **lose-lose** outcome.
 - Such a situation is **socially inefficient**.
- ▶ We will see more situations similar to the prisoners' dilemma.

Solutions for a game

Is it always possible to solve a game by finding dominant strategies?What are the solutions of the following games?

▶ We need a new solution concept: Nash equilibrium!

Road map

► Static games.

- Prisoners' dilemma.
- Nash equilibrium.
- Cournot competition.
- ▶ Dynamic games: Backward induction.
- Pricing in a supply chain.

Static games 000000000000000	Dynamic games 000000000000000	Price of anarchy 00000000	Equilibrium concepts 00000

Nash equilibrium: definition

▶ The most fundamental equilibrium concept is the Nash equilibrium:

Definition 1 (Nash equilibrium)

For an n-player game, let S_i be player *i*'s action space and u_i be player *i*'s utility function, i = 1, ..., n. An action profile $(s_1^*, ..., s_n^*)$, $s_i^* \in S_i$, is a (pure-strategy) Nash equilibrium if

$$u_i(s_1^*, \dots, s_{i-1}^*, s_i^*, s_{i+1}^*, \dots, s_n^*) \\\geq u_i(s_1^*, \dots, s_{i-1}^*, s_i, s_{i+1}^*, \dots, s_n^*)$$

for all $s_i \in S_i$, i = 1, ..., n.

- Alternatively, $s_i^* \in \underset{s_i \in S_i}{\operatorname{argmax}} \left\{ u_i(s_1^*, ..., s_{i-1}^*, s_i, s_{i+1}^*, ..., s_n^*) \right\}$ for all i.
- ▶ In a Nash equilibrium, no one has an incentive to **unilaterally deviate**.
- ▶ The term "pure-strategy" will be explained later.

Static games	Dynamic games	Price of anarchy	Equilibrium concepts
0000000000000000	000000000000000000000000000000000000000	0000000	00000

Nash equilibrium: an example

• Consider the following game with no dominant strategy:

	Player 2			
		\mathbf{L}	С	R
Player 1	Т	0,4	4,0	5,3
	М	4,0	0,4	5,3
	В	3, 5	3,5	6, 6

- ▶ What is a Nash equilibrium?
 - ▶ (T, L) is not: Player 1 will deviate to M or B.
 - ▶ (T, C) is not: Player 2 will deviate to L or R.
 - ▶ (B, R) is: No one will unilaterally deviate.
 - Any other Nash equilibrium?
- ▶ Why a Nash equilibrium is an "outcome"?
 - Imagine that they takes turns to make decisions until no one wants to move. What will be the outcome?

Static games	Dynamic games	Price of anarchy	Equilibrium concepts
0000000000000000	000000000000000	00000000	00000

Nash equilibrium: More examples

▶ Is there any Nash equilibrium of the prisoners' dilemma?

▶ How about the following two games?

Existence of a Nash equilibrium

	Η	Т
Н	1, -1	-1, 1
Т	-1, 1	1, -1

- The last game does not have a "pure-strategy" Nash equilibrium.
- What if we allow randomized (mixed) strategy?
- In 1950, John Nash proved the following theorem regarding the existence of "mixed-strategy" Nash equilibrium:

Proposition 1

For a static game, if the number of players is finite and the action spaces are all finite, there exists at least one mixed-strategy Nash equilibrium.

- ▶ This is a sufficient condition. Is it necessary?
- In most business applications of Game Theory, people focus only on pure-strategy Nash equilibria.

Road map

► Static games.

- Prisoners' dilemma.
- Nash equilibrium.
- Cournot competition.
- ▶ Dynamic games: Backward induction.
- Pricing in a supply chain.

Cournot Competition

- In 1838, Antoine Cournot introduced the following quantity competition between two retailers.
- Let q_i be the production quantity of firm i, i = 1, 2.
- ▶ Let P(Q) = a Q be the market-clearing price for an aggregate demand $Q = q_1 + q_2$.
- Unit production cost of both firms is c < a.
- Each firm wants to maximize its profit.
- Our questions are:
 - ▶ In this environment, what will these two firms do?
 - ► Is the outcome satisfactory?
 - What is the difference between duopoly and monopoly (i.e., decentralization and integration)?

Equilibrium concepts 00000

Cournot Competition

- ▶ Players: 1 and 2.
- Action spaces: $S_i = [0, \infty)$ for i = 1, 2.
- ▶ Utility functions:

$$u_1(q_1, q_2) = q_1 \Big[a - (q_1 + q_2) - c \Big]$$
 and
 $u_2(q_1, q_2) = q_2 \Big[a - (q_1 + q_2) - c \Big].$

As for an outcome, we look for a Nash equilibrium.
If (q₁^{*}, q₂^{*}) is a Nash equilibrium, it must solve

$$\begin{aligned} q_1^* &\in \underset{q_1 \in [0,\infty)}{\operatorname{argmax}} \ u_1(q_1, q_2^*) = \underset{q_1 \in [0,\infty)}{\operatorname{argmax}} \ q_1 \Big[a - (q_1 + q_2^*) - c \Big] \text{ and} \\ q_2^* &\in \underset{q_2 \in [0,\infty)}{\operatorname{argmax}} \ u_2(q_1^*, q_2) = \underset{q_2 \in [0,\infty)}{\operatorname{argmax}} \ q_2 \Big[a - (q_1^* + q_2) - c \Big]. \end{aligned}$$

Introduction to Game Theory

Static games 000000000000●000	Dynamic games 000000000000000	Price of anarchy 00000000	Equilibrium concepts 00000

Solving the Cournot competition

- ► For firm 1, we first see that the objective function is strictly concave: • $u'_1(q_1, q_2^*) = a - q_1 - q_2^* - c - q_1$. $u''_1(q_1, q_2^*) = -2 < 0$.
- ▶ The first-order condition suggests $q_1^* = \frac{1}{2}(a q_2^* c)$ as the **best** response function.
 - If $q_2^* < a c$, q_1^* is optimal for firm 1.
- ▶ Similarly, $q_2^* = \frac{1}{2}(a q_1^* c)$ is firm 2's optimal decision if $q_1^* < a c$.
- ▶ If (q_1^*, q_2^*) is a Nash equilibrium such that $q_i^* < a c$ for i = 1, 2, it must satisfy

$$q_1^* = \frac{1}{2}(a - q_2^* - c)$$
 and $q_2^* = \frac{1}{2}(a - q_1^* - c).$

▶ The unique solution to this system is $q_1^* = q_2^* = \frac{a-c}{3}$.

- Does this solution make sense?
- As $\frac{a-c}{3} < a-c$, this is indeed a Nash equilibrium. It is also unique.

Distortion due to decentralization

- ▶ What is the "cost" of decentralization?
- Suppose the two firms' are integrated together to jointly choose the aggregate production quantity.
- ► They together solve

$$\max_{Q \in [0,\infty)} Q[a - Q - c],$$

whose optimal solution is $Q^* = \frac{a-c}{2}$.

- ► First observation: $Q^* = \frac{a-c}{2} < \frac{2(a-c)}{3} = q_1^* + q_2^*$.
- Why does a firm intend to increase its production quantity under decentralization?

Static games 00000000000000000000	Dynamic games 000000000000000	Price of anarchy 00000000	Equilibrium concepts 00000

Inefficiency due to decentralization

- ▶ May these firms improve their profitability with integration?
- \blacktriangleright Under decentralization, firm *i* earns

$$\pi_i^D = \frac{(a-c)}{3} \left[a - \frac{2(a-c)}{3} - c \right] = \left(\frac{a-c}{3} \right) \left(\frac{a-c}{3} \right) = \frac{(a-c)^2}{9}.$$

▶ Under integration, the two firms earn

$$\pi^{C} = \frac{(a-c)}{2} \left[a - \frac{a-c}{2} - c \right] = \left(\frac{a-c}{2} \right) \left(\frac{a-c}{2} \right) = \frac{(a-c)^{2}}{4}.$$

▶ $\pi^C > \pi_1^D + \pi_2^D$: The integrated system is more **efficient**.

- ▶ Through appropriate profit splitting, both firm earns more.
 - ▶ Integration can result in a **win-win** solution for firms!
- However, under monopoly the aggregate quantity is lower and the price is higher. Consumers benefits from firms' competition.

The two firms' prisoners' dilemma

- ▶ Now we know the two firms should together produce $Q = \frac{a-c}{2}$.
- What if we suggest them to produce $q'_1 = q'_2 = \frac{a-c}{4}$?
- ▶ This maximizes the total profit but is **not** a Nash equilibrium:
 - If he chooses $q' = \frac{a-c}{4}$, I will move to

$$q'' = \frac{1}{2}(a - q' - c) = \frac{3(a - c)}{8}.$$

▶ So both firms will have incentives to unilaterally deviate.

▶ These two firms are engaged in a prisoners' dilemma!

Equilibrium concepts 00000

Road map

▶ Static games.

- ▶ Dynamic games.
 - **Backward** induction.
 - Pricing in a supply chain.

Static games	Dynamic games	Price of anarchy	Equilibrium concepts
000000000000000000000000000000000000000	00000000000000	0000000	00000

Dynamic games

▶ Recall the game "BoS":

Player 2 Player 1 $\begin{array}{c|c} Player 2 \\ \hline B & S \\ \hline B & 2,1 & 0,0 \\ \hline S & 0,0 & 1,2 \end{array}$

- ▶ What if the two players make decisions **sequentially** rather than simultaneously?
 - ▶ What will they do in equilibrium?
 - ▶ How do their payoffs change?
 - ▶ Is it better to be the **leader** or the **follower**?

Equilibrium concepts 00000

Game tree for dynamic games

- Suppose player 1 moves first.
- Instead of a game matrix, the game can now be described by a game tree.
 - At each internal node, the label shows who is making a decision.
 - At each link, the label shows an action.
 - At each leaf, the numbers show the payoffs.
- ▶ The games is played from the root to leaves.

Static games	Dynamic games	Price of anarchy	Equilibrium concepts
000000000000000	00000000000000	0000000	00000

Optimal strategies

- ▶ How should player 1 move?
- She must **predict** how player 2 will response:
 - ▶ If B has been chosen, choose B.
 - ▶ If S has been chosen, choose S.
- ► This is player 2's **best response**.
- Player 1 can now make her decision:
 - ▶ If I choose B, I will end up with 2.
 - ▶ If I choose S, I will end up with 1.
- ▶ So player 1 will choose B.
- ► An equilibrium outcome is a "path" goes from the root to a leaf.
 - ▶ In equilibrium, they play (B, B).

	2	В	2, 1
1	В	S	~ 0, 0
	S 2	В	_0,0
	×	S	>1, 2

Sequential moves vs. simultaneous moves

- ▶ In the static version, there are two pure-strategy Nash equilibria:
 - \triangleright (B, B) and (S, S).
- When the game is played dynamically with player 1 moves first, there is only one equilibrium outcome:

▶ (B, B).

- ▶ Their **equilibrium behaviors** change. Is it always the case?
- ▶ Being the leader is beneficial. Is it always the case?

Equilibrium concepts 00000

Dynamic matching pennies

Suppose the game "matching pennies" is played dynamically:

- ▶ What is the equilibrium outcome?
- ▶ There are multiple possible outcomes.
- Being the leader **hurts** player 1.

Backward induction

- ▶ In the previous two examples, there are a leader and a follower.
- Before the leader can make her decision, she must anticipate what the follower will do.
- ▶ When there are multiple **stages** in a dynamic game, we generally analyze those decision problems **from the last stage**.
 - The second last stage problem can be solved by having the last stage behavior in mind.
 - ▶ Then the third last stage, the fourth last stage, ...
- ▶ In general, we move **backwards** until the first stage problem is solved.
- ▶ This solution concept is called **backward induction**.

Equilibrium concepts 00000

Road map

▶ Static games.

Dynamic games.

- Backward induction.
- Pricing in a supply chain.

Static games	Dynamic games	Price of anarchy	Equilibrium concepts
0000000000000000	0000000000000000	00000000	00000

Pricing in a supply chain

▶ There is a manufacturer and a retailer in a supply chain.

- ▶ The manufacturer supplies to the retailer, who then sells to consumers.
- The manufacturer sets the wholesale price w and then the retailer sets the retail price r.
- ▶ The demand is D(r) = A Br, where A and B are known constants.
- The unit production cost is C, a known constant.
- Each of them wants to maximize her or his profit.

Equilibrium concepts 00000

Pricing in a supply chain (illustrative)

- Let's assume A = B = 1 and C = 0 for a while.
- Let's apply backward induction to **solve** this game.
- ▶ For the retailer, the wholesale price is **given**. He solves

$$\max_{r\geq 0} (r-w)(1-r).$$

• The optimal solution (best response) is $r^*(w) \equiv \frac{w+1}{2}$.

Pricing in a supply chain (illustrative)

▶ The manufacturer **predicts** the retailer's decision:

- Given her offer w, the retail price will be $r^*(w) \equiv \frac{w+1}{2}$.
- ▶ More importantly, the **order quantity** (which is the demand) will be

$$1 - r^*(w) = 1 - \frac{w+1}{2} = \frac{1-w}{2}$$

▶ The manufacturer's solves

$$\max_{w \ge 0} \ w\left(\frac{1-w}{2}\right).$$

• The optimal solution is $w^* = \frac{1}{2}$.

Pricing in a supply chain (illustrative)

▶ As the manufacturer offers $w^* = \frac{1}{2}$, the resulting retail price is

$$r^* \equiv r^*(w^*) = \frac{w^* + 1}{2} = \frac{3}{4} > \frac{1}{2} = w^*.$$

A common practice called **markup**.

- The sales volume is $D(r^*) = 1 r^* = \frac{1}{4}$.
- The retailer earns $(r^* w^*)D(r^*) = (\frac{1}{4})(\frac{1}{4}) = \frac{1}{16}$.
- The manufacturer earns $w^*D(r^*) = (\frac{1}{2})(\frac{1}{4}) = \frac{1}{8}$.
- In total, they earn $\frac{1}{16} + \frac{1}{8} = \frac{3}{16}$.

Static games 0000000000000000	Dynamic games 000000000000000000	Price of anarchy 00000000	Equilibrium concepts 00000

Pricing in a supply chain (general)

▶ For the retailer, the wholesale price is given. He solves

$$\max_{r\geq 0} (r-w)(A-Br)$$

▶ The optimal solution is $r^*(w) \equiv \frac{Bw+A}{2B}$.

▶ The manufacturer predicts the retailer's decision:

- Given her offer w, the retail price will be $r^*(w) \equiv \frac{Bw+A}{2B}$.
- More importantly, the order quantity (which is the demand) will be $A Br^*(w) = A \frac{Bw+A}{2} = \frac{A-Bw}{2}$.

▶ The manufacturer's problem:

$$\max_{w \ge 0} (w - C) \left(\frac{A - Bw}{2}\right)$$

• The optimal solution is $w^* = \frac{BC+A}{2B}$.

Equilibrium concepts 00000

Pricing in a supply chain (general)

- ► As the manufacturer offers $w^* = \frac{BC+A}{2B}$, the resulting retail price is $r^* \equiv r^*(w^*) = \frac{Bw^*+A}{2B} = \frac{BC+3A}{4B}$.
- ▶ The sales volume is $D(r^*) = A Br^* = \frac{A BC}{4}$.
- ► The retailer earns $(r^* w^*)D(r^*) = (\frac{A-BC}{4B})(\frac{A-BC}{4}) = \frac{(A-BC)^2}{16B}$.
- ▶ The manufacturer earns $(w^* C)D(r^*) = (\frac{A BC}{2B})(\frac{A BC}{4}) = \frac{(A BC)^2}{8B}$.
- ▶ In total, they earn $\frac{(A-BC)^2}{16B} + \frac{(A-BC)^2}{8B} = \frac{3(A-BC)^2}{16B}$.

Pricing in a cooperative supply chain

- Suppose the two firms are **cooperative**.
- ▶ They decide the wholesale and retail prices together.
- ▶ Is there a way to allow both players to be **better off**?
- Consider the following proposal:
 - Let's set $w^{\text{FB}} = C = 0$ and $r^{\text{FB}} = \frac{1}{2}$ (FB: **first best**).
 - The sales volume is

$$D(r^{\rm FB}) = 1 - \frac{1}{2} = \frac{1}{2}.$$

The total profit is

$$r^{FB}D(r^{FB}) = \frac{1}{4}.$$

▶ This is larger than $\frac{3}{16}$, the total profit generated under decentralization.

▶ How to split the pie to get a **win-win** situation?

Dynamic games with embedded static games

- ▶ We may have dynamic games with **embedded static games**.
- Consider the following game:
 - A manufacturer setting a wholesale price w and then two retailers each setting an order quantity q_i .
 - Retailer *i*'s utility function is $q_i[a (q_1 + q_2) w]$.
 - The manufacturer's utility function is $(w c)(q_1 + q_2)$.
- ► Backward induction:
 - ▶ In stage 2, the Nash equilibrium is $(q_1^*, q_2^*) = (\frac{a-w}{3}, \frac{a-w}{3})$.
 - In stage 1, the equilibrium wholesale price is $w^* = \frac{a+c}{2}$.
- ▶ Recall the prisoners' dilemma:
 - The game designer should design the game (by determining the penalties) to induce the prisoners to confess!

Road map

- ▶ Static games: Nash equilibrium.
- ▶ Dynamic games: Backward induction.
- ▶ Price of anarchy.
- ▶ Four fundamental equilibrium concepts.

Measuring efficiency loss

- ▶ In many cases, we want to measure **efficiency loss** due to decentralization.
 - ▶ In general there may be **multiple equilibria**. Which one to choose?
 - Similar to the "approximation ratio" in an approximation algorithm or the "competitive ratio" in an online algorithm, let's choose the worst one!
- Consider a game with a set of players N. Player *i*'s strategy set is S_i and utility function is $u_i : S \to \mathbb{R}^+$, where $S = S_1 \times \cdots \times S_n$.
- Let a measure of efficiency of each outcome be $z: S \to \mathbb{R}^+$.
 - Example 1 (sum of all utilities): $z(s) = \sum_{i \in N} u_i(s)$.
 - Example 2 (lowest utility): $z(s) = \min_{i \in N} u_i(s)$.
- ▶ Let $S_e \subseteq S$ be the set of strategy profiles that may exist in equilibrium.

Static games	Dynamic games	Price of anarchy	Equilibrium concepts
000000000000000	00000000000000	0000000	00000

Suppose that we want to maximize $z(\cdot)$.

Definition 2 (Price of anarchy)

The **price of anarchy** (PoA) of a game $(N, \{S_i\}, \{u_i\})$ with the objective of maximizing the efficiency measure $z(\cdot)$ is

$$\operatorname{PoA} = \frac{\max_{s \in S} z(s)}{\min_{s \in S_e} z(s)}.$$

- The price of anarchy is formed by a best centralized outcome and a worst decentralized outcome.
- ▶ It measures how the efficiency of a system degrades due to decentralized decision making in the worst case.
- ▶ If we want to minimize $z(\cdot)$, we have PoA = $\frac{\min_{s \in S_e} z(s)}{\max_{s \in S} z(s)}$.

Static games	Dynamic games	Price of anarchy	Equilibrium concepts
0000000000000000	000000000000000000000000000000000000000	000000	00000

Price of stability

► The **price of stability** (PoS) considers the **best** decentralized outcome and is defined as

$$PoA = \frac{\max_{s \in S} z(s)}{\max_{s \in S_e} z(s)}.$$

- By definition, we know that $1 \leq PoS \leq PoA$.
 - ▶ The efficiency loss due to decentralization is between PoS and PoA.

Example 1: prisoners' dilemma

Recall our prisoners' dilemma

- Let the efficiency measure be the sum of the absolute value of utilities. We aim to minimize this.
- The best centralized outcome results in z(D, D) = 2.
- The worst (actually unique) decentralized outcome results in z(C, C) = 12.
- Both the PoA and PoS are $\frac{12}{2} = 6$.

Static games	Dynamic games	Price of anarchy	Equilibrium concepts
0000000000000000	000000000000000	00000000	00000

Example 2: Cournot competition

- ▶ Recall the Cournot competition.
 - ▶ $q_1^* = q_2^* = \frac{a-c}{3}$.
 - Each of them earns $\frac{(a-c)^2}{9}$.
- ▶ Let the efficiency measure be the **sum of the two firm's profits**. We aim to maximize this.
- ▶ The best centralized outcome results in $z(\frac{a-c}{4}, \frac{a-c}{4}) = \frac{(a-c)^2}{4}$.
- ► The worst (actually unique) decentralized outcome results in $z(\frac{a-c}{3}, \frac{a-c}{3}) = \frac{2(a-c)^2}{9}$.
- ▶ Both the PoA and PoS are

$$\frac{(a-c)^2/4}{2(a-c)^2/9} = \frac{9}{8}.$$

Static games 0000000000000000	Dynamic games 000000000000000	Price of anarchy 000000●0	Equilibrium concepts 00000

Example 3: BoS

Recall the BoS. Suppose that the game is now

Player 2
Player 1
$$\begin{array}{c|c} Player 2 \\ \hline B & S \\ \hline B & 3,1 & 0,0 \\ \hline S & 0,0 & 1,2 \end{array}$$

- Let the efficiency measure be the sum of utilities. We aim to maximize this.
- The best centralized outcome results in z(B, B) = 4.
- ▶ The worst decentralized outcome results in z(S, S) = 3. The PoA is $\frac{4}{3}$. Note that it is not $\frac{4}{0}$!
- ▶ The best decentralized outcome results in z(B, B) = 4. The PoS is 1.

Static games	Dynamic games	Price of anarchy	Equilibrium concepts
0000000000000000	000000000000000	0000000●	00000

Example 4: supply chain pricing

- ▶ Recall the supply chain pricing game $(w^* = \frac{1}{2}, r^* = \frac{1}{4})$.
- ► Let's maximize the **minimum of the two firm's profits**.
- ▶ The worst (actually unique) decentralized outcome results in

$$z\left(\frac{1}{2},\frac{1}{4}\right) = \min\left\{\frac{1}{8},\frac{1}{16}\right\} = \frac{1}{16}.$$

- ▶ What is the best centralized outcome?
 - Together they may generate up to $\frac{1}{4}$ as the total profit.
 - ► To maximize the minimum profit, they should split the total profit equally to make each of them earn ¹/₈.

▶ Both the PoA and PoS are

$$\frac{1/8}{1/16} = 2$$

Road map

- ▶ Static games: Nash equilibrium.
- ▶ Dynamic games: Backward induction.
- ▶ Price of anarchy.
- ► Four fundamental equilibrium concepts.

Static games	Dynamic games	Price of anarchy	Equilibrium concepts
000000000000000	00000000000000000	0000000	00000

Information

- We have introduced static games and dynamic games under **complete information**.
 - ▶ All players know the others' utility functions.
 - ▶ All players know that all players know the others' utility functions.
 - ▶ All players know that all players know that all players know that the others' utility functions.
 - And so on.
- ▶ There are also games with **incomplete information**.
 - Typically, there is at least one player that does not know at least one another player's utility function.
 - ▶ E.g., auction.

Four fundamental equilibrium concepts

▶ We have four types of games, each with a fundamental equilibrium concept:

	Complete information	Incomplete information	
Static games	Nash	Baysian Nash	
Dynamic games	Subgame perfect	Perfect Baysian	

▶ To understand them, please prepare:

- Calculus.
- Probability.
- ▶ A genius' brain, or a beautiful mind.

Equilibrium concepts 00000

Further learning materials

商管研究中的賽局分析 (一):通路選擇、合 約制定與共享經濟 (Game Theoretic Analysis for Business Research (1)) Available now

https://www.coursera.org/ learn/gabr

商管研究中的賽局分析 (二):資訊經濟學 (Game Theoretic Analysis for Business Research (2)) Available now

https://www.coursera.org/ learn/gabr2 Dynamic games 000000000000000000 Price of anarchy 00000000 Equilibrium concepts 00000

Further learning materials

Buy it!

INFORMATION ECONOMICS

ABOUT INFO LECTURES PROBLEM SETS

LECTURE MATERIALS

Week	Торіс	Lecture	Video	Pre-lecture Problem
1	Review of optimization	Slides	Video	N/A
2	Review of game theory	Slides	Playlist	Problems
3	Channel selection under competition	Slides	Playlist	Problems
4	Channel coordination with returns	Slides	Playlist	Problems
5	No class: National holiday	N/A	N/A	N/A
6	Retail and delivery platforms	Handout	N/A	Problems
7	The screening theory	Slides	Playlist	Problems
8	Endogenous adverse selection	Slides	Playlist	Problems
9	The signaling theory	Slides, Handout	Playlist	Problems
10	Signaling quality through specialization	Slides	Playlist	Problems

http://www.im.ntu.edu.tw/~lckung/ courses/public/IE_English/

Introduction to Game Theory