How Good is a Two-Party Election Game?

Speaker: Chuang-Chieh Lin
Joint work with
Chi-Jen Lu and Po-An Chen

Theoretical Computer Science (2021)

2021 Summer School on Operations Research and Applications $19 th \ August \ 2021$

Chuang-Chieh Lin 林莊傑

Dept. Computer Science and Information Engineering, Tamkang University

Chi-Jen Lu 呂及人

Institute of Information Science, Academia Sinica

Po-An Chen 陳柏安

Institute of Information Management, National Yang-Ming Chiao-Tung University

Outline

- Introduction and Motivations
- 2 The Formal Setting
- 3 The First Equilibrium Existence Results
- 4 Generalization: ≥ 2 Candidates for Each Party
- 5 The Price of Anarchy Bounds
- **6** Concluding Remarks

Outline

- 1 Introduction and Motivations
- 2 The Formal Setting
- 3 The First Equilibrium Existence Results
- 4 Generalization: ≥ 2 Candidates for Each Party
- 5 The Price of Anarchy Bounds
- 6 Concluding Remarks

The Inspiration

"[...] and that government of the people, by the people, for the people, shall not perish from the earth."

— Abraham Lincoln, 1863.

• Cheng *et al.* Of the People: Voting is more effective with representative candidates. (*EC'17*).

Motivations (I): Why The Two-Party System?

"The simple-majority single-ballot system favours the two-party system." — Maurice Duverger, 1964.

Motivations (II): Social Choice Rules

Example:

- Each voter provides an ordinal ranking of the candidates,
- Aggregate these rankings to produce either a single winner or a consensus ranking of all (or some) candidates.

Motivations (II): Social Choice Rules

Example:

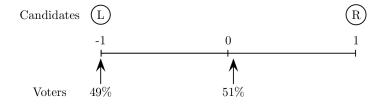
- Each voter provides an ordinal ranking of the candidates,
- Aggregate these rankings to produce either a single winner or a consensus ranking of all (or some) candidates.

Gibbard-Satterthwaite Theorem (1973)

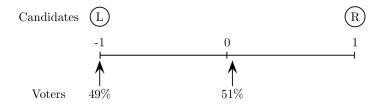
Given a deterministic electoral system that choose a single winner. For every voting rule, one of the following three things must hold:

- The rule is dictatorial.
- The rule limits the possible outcomes to two alternatives only.
- The rule is susceptible to tactical voting.

Motivations (III): Distortion of Social Choice Rules



Motivations (III): Distortion of Social Choice Rules



- The average distance from the population to candidate L: \approx 0.5.
- ullet The average distance from the population to candidate R: pprox 1.5.
- But R will be elected as the winner in the election.

Issues of Previous Studies

- Voters' behavior on a micro-level.
 - Voters are strategic;
 - Voters have different preferences for the candidates.
 - Various election rules result in different winner(s).

:

- We consider an intuitive macro perspective instead.
 - Parties are players;
 - The strategies can be their nominated candidates (or policies);

- We consider an intuitive macro perspective instead.
 - Parties are players;
 - The strategies can be their nominated candidates (or policies);
 - The point is:

- We consider an intuitive macro perspective instead.
 - Parties are players;
 - The strategies can be their nominated candidates (or policies);
 - The point is:
 - Who is more likely to win the election campaign and how likely is it?

- We consider an intuitive macro perspective instead.
 - Parties are players;
 - The strategies can be their nominated candidates (or policies);
 - The point is:
 - Who is more likely to win the election campaign and how likely is it?
 - Is the game stable in some sense?

- We consider an intuitive macro perspective instead.
 - Parties are players;
 - The strategies can be their nominated candidates (or policies);
 - The point is:
 - Who is more likely to win the election campaign and how likely is it?
 - Is the game stable in some sense?
 - What's the price for stability which resembles "the distortion"?

Party A

Party B

Party A

Winning prob.=0.6

Expected utility for A: **Party B** 0.6*7+0.4*3 = 5.4

Winning prob.=0.4

Expected utility for B:

Party A

Winning prob.=0.5

Expected utility for A: 0.5*7+0.5*3 = 5.0

Party B

Winning prob.=0.4

Expected utility for B: 0.4*5+0.6*3 = 3.8

$$u(B_1) = 5 + 3 = 8$$

Winning prob.=0.5

Expected utility for B: 0.5*3+0.5*7 = 5.0

$$u(B_2) = 3 + 7 = 10$$

Winning prob.=0.5 Expected utility for A: 0.5*7+0.5*3=5.0Party B Party A $u(A_1) = 7 + 3 = 10$ Winning prob.=0.5 Expected utility for A: **0.5*5+0.5*7 = 6.0** $u(A_{3}) = 5 + 5 = 10$

Winning prob.=0.5

Expected utility for B: 0.5*3+0.5*5 = 4.0

$$u(B_2) = 3 + 7 = 10$$

Party A

Party B

Winning prob.=0.4

Expected utility for B: **0.4*5+0.6*5** = **5.0**

$$u(B_1) = 5 + 3 = 8$$

Winning prob.=0.6

Expected utility for A: 0.6*5+0.4*3 = 4.2

Winning prob.=0.5

Expected utility for B: 0.5*3+0.5*5 = 4.0

$$u(A_{2}) = 5 + 5 = 10$$

$$u(\mathbf{B}_2) = 3 + 7 = 10$$

Winning prob.=0.6 Expected utility for A: Party B Party A 0.6*7+0.4*3 = 5.4 $u(A_1) = 7 + 3 = 10$ Winning prob.=0.6 Expected utility for A: 0.6*5+0.4*3 = 4.2 $u(A_{3}) = 5 + 5 = 10$

Winning prob.=0.4

Expected utility for B: 0.4*5+0.6*5 = 5.0

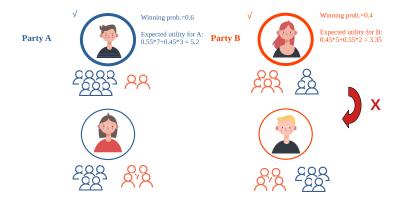
 $u(\mathbf{B}_1) = 5 + 3 = 8$

 $u(B_2) = 3 + 7 = 10$

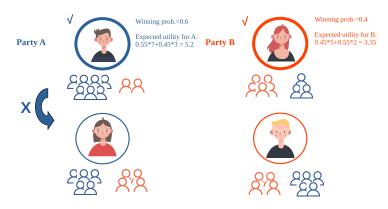
Concept of Stability: Pure Nash Equilibrium

- Each party's strategy: candidate nomination.
- Pure Nash equilibrium (PNE): Neither party A nor B wants to deviate (i.e., change) from their strategy (i.e., nomination) unilaterally.

An instance with a PNE.



An instance with a PNE (expected social utility: 8.55).



A Kind of Inefficiency Measure: The Price of Anarchy

An instance with a PNE (expected social utility: 8.55, optimum: 9).

• The price of anarchy (POA): $\frac{9}{8.55} \approx 1.05$.

Outline

- Introduction and Motivations
- 2 The Formal Setting
- 3 The First Equilibrium Existence Results
- 4 Generalization: \geq 2 Candidates for Each Party
- The Price of Anarchy Bounds
- 6 Concluding Remarks

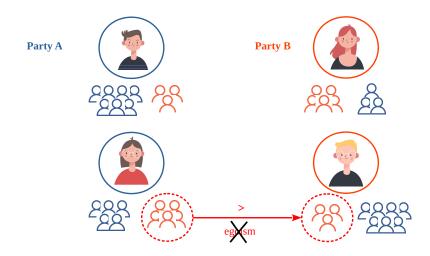
Two-Party Election Game: Formal Setting

- Party A: m candidates $A_1, A_2, ..., A_m$. Party B: n candidates $B_1, B_2, ..., B_n$.
- A_i : brings utility $u(A_i) = u_A(A_i) + u_B(A_i) \in [0, b]$, B_j : brings utility $u(B_j) = u_A(B_j) + u_B(B_j) \in [0, b]$, for some $b \ge 1$.
 - $u_A(A_1) \ge u_A(A_2) \ge \ldots \ge u_A(A_m), \ u_B(B_1) \ge u_B(B_2) \ge \ldots \ge u_B(B_n)$
- $p_{i,j}$: $Pr[A_i \text{ wins over } B_j]$.
- Expected utilities:

$$a_{i,j} = p_{i,j}u_A(A_i) + (1 - p_{i,j})u_A(B_j)$$

 $b_{i,j} = (1 - p_{i,j})u_B(B_j) + p_{i,j}u_B(A_i).$

Egoism (Selfishness)



- Party A: m candidates $A_1, A_2, ..., A_m$. Party B: n candidates $B_1, B_2, ..., B_n$.
- A_i : brings utility $u(A_i) = u_A(A_i) + u_B(A_i) \in [0, b]$, B_j : brings utility $u(B_j) = u_A(B_j) + u_B(B_j) \in [0, b]$, for some $b \ge 1$.
 - $u_A(A_1) \ge u_A(A_2) \ge \ldots \ge u_A(A_m), \ u_B(B_1) \ge u_B(B_2) \ge \ldots \ge u_B(B_n)$
- $p_{i,j}$: $Pr[A_i \text{ wins over } B_j]$.
- Expected utilities:

$$a_{i,j} = p_{i,j}u_A(A_i) + (1 - p_{i,j})u_A(B_j)$$

 $b_{i,j} = (1 - p_{i,j})u_B(B_j) + p_{i,j}u_B(A_i).$

• egoistic: $u_A(A_i) > u_A(B_j)$ and $u_B(B_j) > u_B(A_i)$ for all $i \in [m], j \in [n]$.

- Three models on $p_{i,j}$:
 - Bradley-Terry (Naïve): $p_{i,j} := u(A_i)/(u(A_i) + u(B_j))$
 - Linear dependency on the two social utilities.
 - Intuitive.
 - Linear link: $p_{i,j} := (1 + (u(A_i) u(B_j))/b)/2$.
 - Linear on the difference between the two social utilities.
 - Dueling bandit setting.
 - Softmax: $p_{i,j} := e^{u(A_i)/b}/(e^{u(A_i)/b} + e^{u(B_j)/b})$
 - Bivariate nonlinear rational function of the two social utilities.
 - Extensively used in machine learning.

- Three models on $p_{i,j}$:
 - Bradley-Terry (Naïve): $p_{i,j} := 1/(1 + u(B_i)/u(A_i)) \in [0,1]$.
 - Linear dependency on the ratio of the two social utilities.
 - Intuitive.
 - Linear link: $p_{i,j} := (1 + (u(A_i) u(B_j))/R)/2 \in [0,1].$
 - Linear on the difference between the two social utilities.
 - Dueling bandit setting.
 - Softmax (logistic): $p_{i,j} := 1/(1 + e^{(u(B_j) u(A_i))/R}) \in \left[\frac{1}{1+e}, \frac{e}{1+e}\right].$
 - Non-linear (exponential) dependency on the difference between the two social utilities.
 - Extensively used in machine learning.

- The social welfare of state (i, j): $SU_{i,i} = a_{i,i} + b_{i,i}$.
- (i,j) is a PNE if $a_{i',j} \leq a_{i,j}$ for any $i' \neq i$ and $b_{i,j'} \leq b_{i,j}$ for any $j' \neq j$.

- The social welfare of state (i, j): $SU_{i,i} = a_{i,i} + b_{i,i}$.
- (i,j) is a PNE if $a_{i',j} \leq a_{i,j}$ for any $i' \neq i$ and $b_{i,j'} \leq b_{i,j}$ for any $j' \neq j$.
- The PoA of the game:

$$\frac{SU_{i^*,j^*}}{SU_{\hat{i},\hat{j}}} = \frac{a_{i^*,j^*} + b_{i^*,j^*}}{a_{\hat{i},\hat{j}} + b_{\hat{i},\hat{j}}},$$

- $(i^*, j^*) = \arg\max_{(i,j) \in [m] \times [n]} (a_{i,j} + b_{i,j})$: the optimal state.
- $(\hat{i}, \hat{j}) = \arg\min_{\substack{(i,j) \in [m] \times [n] \\ (i,j) \text{ is a PNE}}} (a_{i,j} + b_{i,j})$: the PNE with **the worst** social welfare.

Outline

- Introduction and Motivations
- 2 The Formal Setting
- 3 The First Equilibrium Existence Results
- 4 Generalization: ≥ 2 Candidates for Each Party
- 5 The Price of Anarchy Bounds
- **6** Concluding Remarks

Preliminary Inspections for the PNE

Focus on m = n = 2 first.

• First try: by human brains and human eyes.

Preliminary Inspections for the PNE

Focus on m = n = 2 first.

- First try: by human brains and human eyes.
 - Difficult. ②

Preliminary Inspections for the PNE

Focus on m = n = 2 first.

- First try: by human brains and human eyes.
 - Difficult. 🔾
- Random sampling: ©
 - Sampling the values of $u_A(A_i)$, $u_B(A_i)$, $u_A(B_j)$, $u_B(B_j)$ for each i, j and the constant b for hundreds of millions times.
 - Experiments for the three winning probability models.

Example: No PNE in the Bradley-Terry Model

m = n = 2, b = 100 (left: egoistic, right: non-egoistic).

Α		В	
$u_A(A_i)$	$u_B(A_i)$	$u_B(B_j)$	$u_A(B_j)$
91	0	11	1
90	8	10	20

Α		В	
$u_A(A_i)$	$u_B(A_i)$	$u_B(B_j)$	$u_A(B_j)$
44	10	37	17
39	55	10	5

	B_1	B_2
A_1	80.51, 1.28	73.84, 2.17
A_2	80.29, 8.32	74.02, 8.23

	B_1	B_2
	30.50, 23.50	
A_2	30.97, 48.43	34.32, 48.81

Example: No PNE in the Linear-Link Model (Non-Egoism)

$$m = n = 2$$
, $b = 100$.

Α		В	
$u_A(A_i)$	$u_B(A_i)$	$u_B(B_j)$	$\overline{u_A(B_j)}$
50	10	10	90
5	20	5	20

	B_1		B_2	
A_1	78,	10	40.25,	8.375
$\overline{A_2}$	79.375,	11.25	12.5,	12.5

Non-Egoistic Games Seem to Be Bad ©

* In our experiments, **EVERY** egoistic game instance in the linear-link/softmax model has a PNE!

Non-Egoistic Games Seem to Be Bad ©

- ★ In our experiments, EVERY egoistic game instance in the linear-link/softmax model has a PNE!
- The following discussions on equilibrium existence consider only egoistic games.

The Dominating-Strategy Equilibrium

Lemma (The Dominating-Strategy Equilibrium)

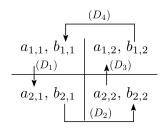
- If $u(A_1) > u(A_i)$ for each $i \in [n] \setminus \{1\}$, then $(1, j^\#)$ is a PNE for $j^\# = \arg\max_{j \in [m]} b_{1,j}$.
- If $u(B_1) > u(B_j)$ for each $j \in [m] \setminus \{1\}$, then $(i^\#, 1)$ is a PNE for $i^\# = \arg\max_{i \in [n]} a_{i,1}$.

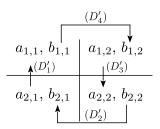
The Dominating-Strategy Equilibrium

Lemma (The Dominating-Strategy Equilibrium)

- If $u(A_1) > u(A_i)$ for each $i \in [n] \setminus \{1\}$, then $(1, j^\#)$ is a PNE for $j^\# = \arg\max_{j \in [m]} b_{1,j}$.
- If $u(B_1) > u(B_j)$ for each $j \in [m] \setminus \{1\}$, then $(i^\#, 1)$ is a PNE for $i^\# = \arg\max_{i \in [n]} a_{i,1}$.
- Hence, the puzzles come from the other cases...

No PNE ⇔ Cycles of Deviations



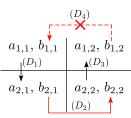


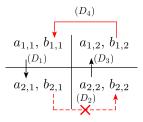
Deviations \rightarrow Inequalities

$$\begin{array}{llll} \Delta(D_1) & = & -\Delta(D_1') = a_{2,1} - a_{1,1} & \Delta(D_3) & = & -\Delta(D_3') = a_{1,2} - a_{2,2} \\ & = & p_{2,1}u_A(A_2) + (1 - p_{2,1})u_A(B_1) & = & p_{1,2}u_A(A_1) + (1 - p_{1,2})u_A(B_2) \\ & & -(p_{1,1}u_A(A_1) + (1 - p_{1,1})u_A(B_1)) & & -(p_{2,2}u_A(A_2) + (1 - p_{2,2})u_A(B_2)) \\ & = & -p_{1,1}(u_A(A_1) - u_A(A_2)) & = & p_{1,2}(u_A(A_1) - u_A(A_2)) \\ & & +(p_{2,1} - p_{1,1})(u_A(A_2) - u_A(B_1)). & & +(p_{1,2} - p_{2,2})(u_A(A_2) - u_A(B_2)). \end{array}$$

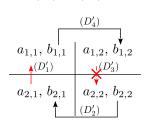
$$\begin{array}{lll} \Delta(D_2) & = & -\Delta(D_2') = b_{2,2} - b_{2,1} & \Delta(D_4) & = & -\Delta(D_4') = b_{1,1} - b_{1,2} \\ & = & (1 - p_{2,2})u_B(B_2) + p_{2,2}u_B(A_2) & = & (1 - p_{1,1})u_B(B_1) + p_{1,1}u_B(A_1) \\ & & -((1 - p_{2,1})u_B(B_1) + p_{2,1}u_B(A_2)) & & -((1 - p_{1,2})u_B(B_2) + p_{1,2}u_B(A_1)) \\ & = & -(1 - p_{2,1})(u_B(B_1) - u_B(B_2)) & = & (1 - p_{1,1})(u_B(B_1) - u_B(B_2)) \\ & & +(p_{2,1} - p_{2,2})(u_B(B_2) - u_B(A_2)). & & +(p_{1,2} - p_{1,1})(u_B(B_2) - u_B(A_1)). \end{array}$$

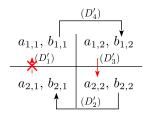
The Crucial Lemma





if
$$u(B_2) > u(B_1)$$
:





The Crucial Lemma

Lemma (Main Lemma for the Linear-Link & Softmax Models)

Consider the two-party election game in the linear-link/softmax model.

- If $u(A_2) > u(A_1)$, then
 - $\Delta(D_2) > 0 \Rightarrow \Delta(D_4) < 0$
 - $\Delta(D_4) > 0 \Rightarrow \Delta(D_2) < 0$.
- If $u(B_2) > u(B_1)$, then
 - $\Delta(D_1') > 0 \Rightarrow \Delta(D_3') < 0$.
 - $\Delta(D_3') > 0 \Rightarrow \Delta(D_1') < 0$.

The Crucial Lemma

Lemma (Main Lemma for the Linear-Link & Softmax Models)

Consider the two-party election game in the linear-link/softmax model.

- If $u(A_2) > u(A_1)$, then
 - $\Delta(D_2) > 0 \Rightarrow \Delta(D_4) < 0$
 - $\Delta(D_4) > 0 \Rightarrow \Delta(D_2) < 0$.
- If $u(B_2) > u(B_1)$, then
 - $\Delta(D_1') > 0 \Rightarrow \Delta(D_3') < 0$.
 - $\Delta(D_3') > 0 \Rightarrow \Delta(D_1') < 0$.

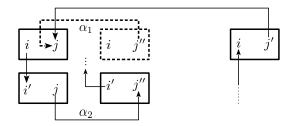
Theorem (First Equilibrium Existence Result for m = n = 2)

In the linear-link/softmax model with m=n=2, the two-party election game always has a PNE. \odot

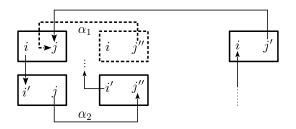
Outline

- Introduction and Motivations
- 2 The Formal Setting
- 3 The First Equilibrium Existence Results
- 4 Generalization: \geq 2 Candidates for Each Party
- 5 The Price of Anarchy Bounds
- Concluding Remarks

What if a party has three or more candidates?



What if a party has three or more candidates?



Theorem (Equilibrium Existence Result for $m, n \ge 2$)

The two-party election game with $m \ge 2$ and $n \ge 2$ always has a PNE in the linear-link/softmax model. ©

Summary of Our Results

	Linear Link	Bradley-Terry	Softmax
PNE w/ egoism	✓	×	✓
PNE w/o egoism	×	×	?#

Outline

- Introduction and Motivations
- 2 The Formal Setting
- 3 The First Equilibrium Existence Results
- 4 Generalization: ≥ 2 Candidates for Each Party
- 5 The Price of Anarchy Bounds
- **6** Concluding Remarks

Relating PNE to OPT

• i dominates i': i < i' and $u(A_i) > u(A_{i'})$.

Lemma (Property I: PNE and Domination)

- \exists i', i' dominates $i \Rightarrow (i,j)$ is not a PNE for any $j \in [n]$.
- $\exists f', f'$ dominates $j \Rightarrow (i,j)$ is not a PNE for any $i \in [m]$.

Proposition (Property II: Relating a PNE to the OPT State)

Let's say we have

- (i, j): a PNE
- (i^*, j^*) : the optimal state.

Then, $u(A_i) + u(B_i) \ge \max\{u(A_{i^*}), u(B_{i^*})\}.$

Illustrating Example: In the Linear-Link Model

For $i \in [m]$, $j \in [n]$,

$$SU_{i,j} = p_{i,j} \cdot u(A_i) + (1 - p_{i,j}) \cdot u(B_j)$$

$$= \frac{1 + (u(A_i) - u(B_j))/b}{2} \cdot u(A_i) + \frac{1 - (u(A_i) - u(B_j))/b}{2} \cdot u(B_j)$$

$$= \frac{1}{2}(u(A_i) + u(B_j)) + \frac{1}{2b}(u(A_i) - u(B_j))^2$$

$$\geq \frac{1}{2}(u(A_i) + u(B_j)).$$

and

$$SU_{i,j} = p_{i,j} \cdot u(A_i) + (1 - p_{i,j}) \cdot u(B_j) \le \max\{u(A_i), u(B_j)\}.$$

Illustrating Example: In the Linear-Link Model (contd.)

Theorem (PoA Bound for Linear-Link)

The two-party election game in the linear link model has $PoA \leq 2$.

Proof.

(i,j): a PNE; (i^*,j^*) : OPT. By the previous Lemma:

$$\begin{cases} i \text{ is not dominated by } i^* \\ j \text{ is not dominated by } j^* \end{cases} \Rightarrow \begin{cases} i \leq i^* \text{ or } u(A_{i^*}) \leq u(A_i) \\ j \leq j^* \text{ or } u(B_{j^*}) \leq u(B_j) \end{cases}$$

- $SU_{i^*,j^*} \leq \max\{u(A_{i^*}),u(B_{j^*})\}, \max\{u(A_{i^*}),u(B_{j^*})\} \leq u(A_i) + u(B_j).$
- $2 \cdot SU_{i,j} \geq u(A_i) + u(B_j)$.

Thus,
$$SU_{i,j} \ge SU_{i^*,j^*}/2$$
.

Illustrating Example: In the Linear-Link Model (Lower Bound)

• A tight example (PoA \approx 2; $\delta \ll \epsilon \ll b$).

Α		В	
$u_A(A_i)$	$u_B(A_i)$	$u_B(B_j)$	$u_A(B_j)$
ϵ	0	ϵ	0
$\epsilon - \delta$	$\epsilon - \delta$	$\epsilon - \delta$	$\epsilon - \delta$

	B_1		B_2	
A_1	$rac{\epsilon}{2}$,	$\frac{\epsilon}{2}$	$\epsilon-\frac{\delta}{2}$,	$\frac{\epsilon}{2} - \frac{\delta}{2}$
A_2	$\frac{\epsilon}{2}-\frac{\delta}{2}$,	$\epsilon - \frac{\delta}{2}$	$\epsilon - \delta$,	$\epsilon - \delta$

The PoA of non-egoistic games can be really bad...

Unbounded PoA for Non-Egoistic Games

Linear-Link Model:

Α		В	
$u_A(A_i)$	$u_B(A_i)$	$u_B(B_j)$	$u_A(B_j)$
ϵ	0	ϵ	0
0	b	0	b

• PoA = $\frac{b}{\epsilon}$.

Unbounded PoA for Non-Egoistic Games

Softmax Model:

Α		В	
$u_A(A_i)$	$u_B(A_i)$	$u_B(B_j)$	$u_A(B_j)$
ϵ	0	ϵ	0
0	b	0	b

• PoA =
$$\frac{b}{2\epsilon e^{\epsilon}/(e^{\epsilon}+1)}$$
.

Unbounded PoA for Non-Egoistic Games

Bradley-Terry Model:

Α		В	
$u_A(A_i)$	$u_B(A_i)$	$u_B(B_j)$	$u_A(B_j)$
ϵ	0	ϵ	0
0	b	0	b

$$\begin{array}{c|ccccc} & B_1 & B_2 \\ \hline A_1 & \frac{\epsilon}{2}, & \frac{\epsilon}{2} & \frac{\epsilon^2 + b^2}{b + \epsilon}, & 0 \\ \hline A_2 & 0, & \frac{\epsilon^2 + b^2}{b + \epsilon} & \frac{b}{2}, & \frac{b}{2} \end{array}$$

• PoA = $\frac{b}{\epsilon}$.

Summary of Our Results +(PoA)

	Linear Link	Bradley-Terry	Softmax
PNE w/ egoism	✓	×	√
PNE w/o egoism	×	×	?#
PoA upper bound w/ egoism	2	2	1+e
PoA lower bound w/ egoism	2	6/5	2
Worst PoA w/o egoism	∞	∞	∞

Outline

- Generalization: > 2 Candidates for Each Party
- Concluding Remarks

Future Work

	Linear Link	Bradley-Terry	Softmax
PNE w/ egoism	√	×	✓
PNE w/o egoism	×	×	?#
PoA upper bound w/ egoism	2	2	1 + e
PoA lower bound w/ egoism	2	6/5	2
Worst PoA w/o egoism	∞	∞	∞

Future Work (contd.)

- Three or more parties.
- The correspondence between macro and micro settings.
- PoA w.r.t. NE.

Thank you.

*Special Acknowledgment: Inserted Pictures Were Designed by Freepik.