
P. Hansen, ed., Studies on Graphs and Discrete Programming
@ North-Holland Publishing Company (1981) 279-301

MAXIMIZING SUBMODULAR SET FUNCTIONS:
FORMULATIONS AND ANALYSIS OF ALGORITHMS*

G.L. NEMHAUSER
School of Operations Research and Industrial Engineering, Cornell Uniuersify, Ithaca, NY,
USA

L.A. WOLSEY
CORE, Uniuersid Catholique de Louuain, Louuain-la-Neuue, Belgium

We consider integer programming formulations of problems that involve the maximiza-
tion of submodular functions. A location problem and a 0-1 quadratic program are
well-known special cases. We give a constraint generation algorithm and a branch-and-
bound algorithm that uses linear programming relaxations. These algorithms are familiar
ones except for their particular selections of starting constraints, subproblems and partition-
ing rules. The algorithms use greedy heuristics to produce feasible solutions, which, in turn,
are used to generate upper bounds. The novel features of the algorithms are the perfor-
mance guarantees they provide on the ratio of lower to upper bounds on the optimal value.

1. Introduction

The following four problems are fundamental to the practical solution of
integer linear programming problems.

(a) Formulation of the model. There are, in many instances, a wide variety of
different linear constraints that can, together with integrality conditions, be
used to represent the same set of points of a (mixed) integer linear program.
Generally these equivalent integer programming formulations give different
linear programs when the integrality constraints are suppressed (see [lS] for
several examples). Solving these linear programs is an essential part of the
fundamental algorithms (branch-and-bound and cutting plane) of integer prog-
ramming. Both the size of the linear programs and the quality of the bounds
they produce determine the success of an integer programming algorithm. Thus
it would be highly desirable to have systematic ways of producing different
formulations and to have criteria for comparing them.

(b) Selection of an initial set of constraints. There are integer programs
whose formulations require a very large number of linear constraints. A
particular example is the well-known formulation of the traveling salesman

* This work has been supported by a NATO Systems Science special research and U.S. National
Science Foundation grant to Cornell University

279

280 G.L. Nemhauser, L.A. Wolsey

problem, which requires an exponential number of constraints to eliminate
subtours [6]; a general class of these problems is the formulation obtained by
applying Benders' decomposition [2] to mixed integer linear programs. In these
instances a general algorithmic approach is to begin with a relaxation that
contains only a relatively small number of linear equalities and to generate
others only if they are found to be violated in the course of the algorithm. One
supposedly tries to choose the initial constraints on the basis of their impor-
tance or significance in defining the feasible region in a neighborhood of an
optimal solution. It would be desirable to begin with a set of constraints having
the property that the optimal value to the relaxed problem (at some stage) was
guaranteed to be no larger than a fixed multiple of the optimal value of the
original problem.

(c) Decisions in a branch-and-bound algorithm. It has been widely observed
that the criterion for choosing the order in which subproblems will be solved
can have a substantial effect on the running time of a branch-and-bound
algorithm. In fact, most commercial codes use a combination of rules in order
to balance the objectives of obtaining feasible solutions quickly and minimizing
the amount of enumeration [12]. Another important decision in a branch-and-
bound algorithm is the type of partition and the rule for choosing a variable (or
set of variables) at each node of the tree to form the partition.

It would be desirable to have criteria for choosing subproblems and parti-
tions that would, with a given amount of computation, guarantee a feasible
solution whose value is a specified fraction of the upper bound.

(d) Finding good feasible solutions. Since an integer programming algorithm
may have to be terminated before it completes the solution of a problem, an
important feature of an algorithm is its capability of producing good feasible
solutions. Although feasible solutions can be generated in a distinct heuristic
phase, a highly desirable feature is an optimizing algorithm that yields feasible
solutions (hopefully of increasing value) as intermediate results.

There is almost no mathematical theory that addresses these problems for
general integer programs. It seems that some structure must be imposed even
to obtain partial answers. In the few instances where there is enough structure
to formulate the integer program directly with a set of linear constraints whose
extreme points are the feasible integer solutions (e.g., network flows and
matching) the formulation question is solved. In the case of network flows this
formulation is compact and there are efficient algorithms so that questions (b),
(c) and (d) are irrelevant. In the case of matching the number of linear
constraints required is exponential in the number of variables. But questions (c)
and (d) are still irrelevant since there are efficient algorithms that begin with a
small number of constraints and then generate only a small number of the
remaining ones.

Maximizing submodular ser functions 28 1

For most integer programs all four of the problems are relevant and current
practice is to cope with them largely by intuition and experience. Our intention
is to provide some theoretical and possibly computationally useful answers to
these problems for a very limited but nontrivial class of combinatorial optimi-
zation problems. This class contains some problems of practical interest.
Furthermore our results suggest potentially useful algorithms for a much larger
class of problems.

Our approach will be to design algorithms that with a specified amount of
computation give both a lower bound (from a feasible solution) and an upper
bound on the optimal value. These bounds have the property that the lower
bound is at least a certain fraction of the upper bound. They will be obtained
by giving appropriate initial sets of constraints and by specifying decision rules
for a branch-and-bound algorithm. We will also show how the structure
produces alternate integer linear programming formulations.

The structure that we require is submodularity. We will introduce this
structure in terms of a practical and well-known integer programming problem.
This problem involves the location of K facilities to maximize the profit from
supplying a commodity to m clients. The set of available locations is N =
(1, . . . , n} and K < n . There is no limit on the number of clients that can be
supplied from a given facility; cii 3 0 is the profit obtained by supplying client i
from a facility at location j. Thus a particular problem is specified by an rn x n
nonnegative matrix C = {cii} and a positive integer K.

A standard mixed integer linear programming formulation of this problem is
m n

V=max C C ciiqi,

f: q i = l , i = l , ..., m,
i = l

xii-yj=sO, i = l , ..., m, j = 1 , ..., n, (1.1)

x i i30 , i = l , ..., m, j = 1 , ..., n

y i e { O , l}, j = 1 , . . ., n

where yi = 1 means that a facility is placed at location j.
The yi’s are the strategic variables since given an S G N and its characteristic

vector ys (y; = 1, j E S and y; = 0, otherwise) an optimal set of xij ’s is given by

1 for some j such that cii = max cik,

0 otherwise,

ksS

i = 1 , . . . , rn.

282 G.L. Nemhauser, L A . Wolsey

The value of a solution (x” , y”) is

We can therefore restate the problem as

V = max(u(S): S EN, IS1 = K) . (1.2)

With u(@)=O, it is well-known and easy to see that the set function u(S)
satisfies for all S, T E N

u (S) + u (T) 3 u (S U T) + u (S n T) . (1.3)

Set functions that satisfy (1.3) are called submodular. In addition, u(S) satisfies
for all S c N and j $ S

u (S U ~ }) - u (S) 3 0 . (1.4)

Set functions that satisfy (1.4) are called nondecreasing.

given by
Thus a natural generalization of this K-location problem is problem PK

Z =max(z(S): S EN, IS1 = K,

z submodular and nondecreasing, z (@) = 0). (1.5)

Problem family PK is the class of problems for which we obtain theoretical
results.

In [3] it was shown that a simple greedy heuristic for problem (1.1) produces
a value that satisfies for all nonnegative m X n matrices C and all rn and n

K - 1 e - 1
3 - 0.63 VG

V* e
- 3 1 - (K> (1.6)

where VLp is the value of the linear programming relaxation of (1.1) obtained
by replacing yi E (0 , l) by yi 3 0 and e is the base of the natural logarithm. Since
VGQ V Q VLp, (1.6) implies

VG K - 1
V (1.7)

It was shown in [17] that (1.7) generalized to the problem P,, in other words
to all nondecreasing submodular functions. A slightly more general result of
[17] is that partial enumeration of all solutions of cardinality q together with a
greedy choice of the remaining K - q elements yields for problem (1.5)

(1.8)

Maximizing submodular set functions 283

where ZG(q) is the value of the q-enumeration plus greedy solution. Note that
putting q = 0 (the greedy algorithm) in (1.8) yields (1.7).

Our interest in the q-enumeration plus greedy family of algorithms is that in
a certain sense they are an optimal family of heuristics for 9,. For fixed K, the
q-enumeration plus greedy algorithm requires 0(nq+l) values' of the function
z. In [16] we showed that any other algorithm for 9, that could give a
performance guarantee (bound) larger than the right-hand side of (1.8) would
require at least 0(nq+') values of the function z.

In contrast with this prior work on heuristics, here we will be concerned with
exact algorithms for solving PK and particular cases of it. Nevertheless, the
results on heuristics will be relevant since we will adopt a point of view
motivated by the questions raised at the beginning of this section.

In Section 2 we give a linearization of nondecreasing, submodular functions
the leads immediately to an integer linear programming formulation of 9,
containing a large number of constraints. In Section 3 we propose a constraint
generation algorithm for this formulation, which is similar to Benders' al-
gorithm [2]. Section 4 gives a branch-and-bound algorithm that uses linear
programming relaxations. These algorithms are familiar ones except for their
particular selections of starting constraints, subproblems, and partitioning rules.
The algorithms use heuristics to produce feasible solutions, which, in turn, are
used to generate upper bounds. The novel features of the algorithms are the
performance guarantee they provide on the ratio of lower to upper bounds on
the optimal value.

In Section 5 we consider the maximization of a general submodular function
subject to linear constraints. These are the problems for which the earlier
results may have computational significance as the algorithms extend rather
naturally to this larger class. Section 6 addresses the question of simplified
linearizations for cases in which the submodular function has additional struc-
ture. We apply these ideas to the K-location problem and the minimization of
some quadratic 0-1 programs.

2. Linearization of nondemeasing submodular ~UIIC~~OM and an integer prog-
ramming formulation

Let pi(S)=z(SU(j})-z(S), V S c N and j e N .

Proposition 1 [17]. A real-valued function z on the subsets of N is submodular

'We use O(n') for the family of functions that is bounded below by c,n' and above by c2nr for
some 0 < c1 < c2.

284 G.L. Nemhauser, L.A. Wolsey

and nondecreasing i f and only i f
(a) p j (S) 2 p j (T) 2 0 , V S c T c N a n d ~ E N - T , or
(b) ~ (T) S Z (S) + & ~ ~ - ~ pi(S) ,VS, T G N .

Recall that y u is the characteristic vector of U G N . Consider the set

Lemma 1. I f z is submodular and nondecreasing, then (5, y") E X i f and only i f
(S Z (U) .

Proof. Suppose 5 S z (U) . Then for all S E N

z (s)+ C p j (S) y y = z (S) + C pj(S)>z(W2t ,
j s N - S jaU-S

where the first inequality follows from Proposition l(b). Conversely (5, y U) € X
implies in particular that

ESZ(U)+ C p j (U) y y = z (U) .
j e N - U

Consider problem (1.5) and the linear integer program

max q

q S z (S) + C p j (S)y j , SEN,
j c N - S

yj E {0,11, i E N-

Problem (2.1) is a reformulation of (1.5) since Lemma 1 implies:

Theorem 1. (q, y) = (z (U) , y u) is an optimal solution to (2.1) i f and only if U is
an optimal solution to (1.5).

Note that although the inequalities of (2.1) are valid for all S E N, they are
needed only for IS1 = K. However, as we shall see later, there may be
computational advantages in using some of the inequalities corresponding to
sets of cardinality smaller than K.

When the particular class of submodular functions u obtained from the
K-location problem are used in (2.1) we obtain an integer linear programming
formulation of the location problem. Although we will not give the details

Maximizing submodular set functions 285

here, a surprising observation is that this integer linear program is precisely the
integer program obtained by applying Benders’ decomposition (with natural
choice of dual extreme points) to the mixed integer linear programming
formulation (l.l), see [lo, 151. The results of the next section will suggest how
we might choose an initial set of constraints if we are going to solve the
K-location problem by Benders’ algorithm.

3. A constraint generation algorithm

First we describe an algorithm for problem (2.1), and then we analyze its
behavior for a particular initialization. An example is given in an appendix.

Algorithm 1
Initialization. Let Q‘ ={Roy . . . , R’-’} be a nonempty set of distinct subsets

of N. Set p = t .
Iteration p
Step 1. Solve the problem

q p = m a x q,

q s z (S) + 1 Pj(S)Yj, S E Q ” ,
j e N - S

C y j = K
j s N

yj E {0,1}, i E N*

Let (qp, y””) be an optimal solution.
Step 2. (a) If qp = z(RP), terminate. R P is optimal.
(b) If qp > z(RP), set Qp+’ = QP U{RP}, p t p + 1, and return to Step 1.

The optimality of R P when Step 2(a) occurs is implied by Lemma 1. To
prove finiteness we note that if Step 2(b) occurs, qp > z(RP) implies R P # Q”.
Also, since R P is feasible the algorithm must terminate after at most (k)
iterations of Step 2.

We note that qf3*..3qP3qP+’a-*.3Z and Z ~ Z (S) V S E Q ~ , so that
the nonincreasing upper bound qp and the nondecreasing lower bound 5” =

maxSEQI z(S) give some measure of the progress of the algorithm.
With an appropriate choice of Q = Q’, a performance guarantee can be

obtained relating q‘ and 6’. The value of the guarantee depends on t. For fixed
K, we will give O (n q) initial constraints for q = 0, . . . , K- 1. The set of
constraints comes from the q-enumeration plus greedy algorithm.

286 G.L. Nemhauser, L.A. Wolsey

The q-enumeration plus greedy algorithm G(q)

The algorithm has two parts.
(i) q-enumeration. Produce a list of all subsets S z of N of cardinality

(ii) greedy. Do for all sets of the list
Initialization. Let Sz be the set chosen from the list, Nz=N-S$ and

Ite, rtion t. Let pj(S)=z(SUu})-z(S). Select i (t) ~ N t ; ' for which

q. h = 1, . . . ,(:).

t = q + l .

with ties settled arbitrarily. Set pt-, = Set Sk = SL-' U{i(t)} and
NA =Nk-'-{i(t)}. If t = K stop with the set SE; otherwise set r t t + l and
continue.

Solution. Output the best solution found in the (3 passes i.e.,

ZG(q)= max z(SF).
h = l ,(:)

Let F(q) = {SL: t = q, . . . , K - 1; h = 1, . . . , (i)} and consider the relaxation
of (2.1) given by

Note that for fixed K problem (3.1) has O(nq) constraints, each of which is
constructed from O(n) values of the function z. Thus the formulation of (3.1)
requires o(nqC1) values of z.

Theorem 2. For any solution of the q-enumeration plus greedy algorithm to PK,

Z G (q) K - q K - q - 1 K - q

71 G k ~) ~ ~ - (y) (K - ~) *

Proof. Let (qG(q), y') be an optimal solution to (3.1). Applying q steps of the
greedy algorithm to the set T, we obtain a set Sz* = {i l , . . . , iq} for which the
submodularity of z implies

pi (S ; *)s z(Sz*)/q, V j E T - S & (3.2)

Maximizing submodular set functions 287

Now as S&EF(q) and (qG(q), y') is feasible to (3.1), it follows that

q G (q) s Z (S x *) + c pi(s;*)y;
jeN-Sz*

Sz(S;*)+(K-q) max pj(Sz*)
jET-S&

(3.3)

K
4

= - Z (S 2 *)

where the middle inequality follows from IT- S:*) = K-q and the last one
from (3.2).

Consider the K-q constraints of (3.1)

7 s z(SL*) + c pj(SL*)yj, t = 4, . . . , K - 1.
jsN-Sb.

Let pq+i = z(S;IZi+')- z(S$?), i = 0, . . . , K-q - 1. Since (qG(q), y') is a feasi-
ble solution to (3.1) we obtain

q G (q) s Z(SL.)+ c pj(S;*)y;
isN-S:.

1-a-1

I-q-1

z (S:*) + c pq + i + (K - q)pI, t = 4, . . . , K - 1
i = O

where the last inequality follows from pt 3 pj(SL*) by the greedy algorithm and
I T - SL.1 s K - 4.

With q G ' " - z (S ~ *) normalized to one, the problem of minimizing

Z(Sf*)-z(Sz*) K-l-q
= C pq+i qG" ' -Z (S: *) i - 0

subject to
s-1

qG(q)SZ(S$*)+ C pq+i +(K-q)pq+,, s = O , . . . , K - q - 1
i = O

is a linear program with variables (pq,. . . , pK-l). Using the weak duality
theorem of linear programming we obtain a lower bound on its value given by
[17, Theorem 4.11

(3.4)

288 G.L. Nemhauser, L.A. Wolsey

Finally using Z G (q) 3 z(Sf*) and qG'q'S(K/q)z(S&) from (3.3) in (3.4), we
obtain

An important observation about the set F(q) is that it contains subsets of
cardinality less than K. Since pi(S)>O, the algorithm will always produce
subsets of size K, even if we replace CjeN yi = K by CieN yi S K. However the
small subsets are needed to obtain the bound of Theorem 2.

Let Z be the value of an optimal solution to 8,. Since Z G (q) < Z 6 q G (q) we
obtain

Corollary 1. For any solution of the q-enumeration plus greedy algorithm to B,,

corollary 2

Note that Corollary 1 is the result (1.8) given in the introduction. Our result
on best algorithms [16], which states that the bound of (1.8) cannot be greater
for any heuristic requiring O(nq+') values of z, also applies to the result of
Theorem 2. In particular, suppose we initialize Algorithm 1 by a collection of
constraints generated from O(nr) values of z . Then if we obtain the bound

for all nondecreasing submodular functions, it follows that r 3 q + 2.
For the K-location problem Algorithm 1 is precisely Benders' algorithm and

thus Theorem 2 suggests how we might initialize Benders' algorithm. Although
our result on best algorithms for (8,) does not apply to the subclass of
K-location problems, we do not know of any better initialization in terms of a
guarantee on the ratio of the lower to the upper bound generated by Benders'
algorithm. Furthermore, the results in [4] imply that, in the worst case,
Benders' algorithm will require O(nK) values of the function u to verify
optimality.

To solve the integer program (3.1), we might first solve its linear program-

Maximizing submodular set functions 289

ming relaxation. For q = 0 we obtain the linear program

ZLP'G' = max q,

q C Z (S ') + C pj(S')yj, t=O ,..., K-1,
i s N - S '

0 d yi d 1, j E N

where {St}:=;' are the sets generated by the greedy algorithm. Since ZLP(G'3
qG"' a stronger version of Theorem 2 for q = 0 is:

Theorem 3. For any solution of the greedy algorithm to PK,

Proof. Since p , = z (S ') - z (S ' - ') ~ p i (S ') ~ O for all j E N - 9 , we have that
Ei.N-Sc pi(S')yi d Kp, for any (real) y satisfying CjcN yj = K. Now from

ZJ-P'G'Cz(S')+ C pj(s')yi,
jcN-S'

we obtain ZLp'" 'S~f :~ pi +Kpt, t = 0,. . . , K- 1. The result then follows
from the linear programming arguments sketched in the proof of Theorem 2.

For some very special cases, including the K-location problem, a result
similar to Theorem 3 has been given in Section 6 of [17].

4. A branch-and-bound algorithm for PK

Algorithm 1 requires the solution of a sequence of integer programs. Here
we propose a branch-and-bound algorithm that uses linear programming
relaxations. The basic idea is to enumerate implicitly all subsets of cardinality
K. For a given subset of cardinality k <K, we use the greedy algorithm to
augment it by K - k elements and thus determine a lower bound on the value
of all solutions containing the given k-element subset. We also use the K- k
elements generated by the greedy algorithm to construct an integer program-
ming relaxation of the formulation of PK given in (2.1). We get an upper
bound on the value of all solutions containing the k-element subset by solving
the linear program obtained by dropping the integrality conditions in the
integer program.

290 G.L. Nemhauser, L.A. Wolsey

A node at level k of the enumeration tree corresponds to a partial solution
in which a subset S of cardinality k has been selected, N S c_ N- S remains and
N - S - N S has been discarded. We denote such a partial solution (or node) by
the pair (S, N S) .

Algorithm 2
Initialization. The list conists only of the node (4, N). The upper bound for

this node is Zm =CQ. The problem lower bound is Z = 0. The incumbent is
I = &

General Itera tion
Step 1. If the list is empty, stop; the incumbent is optimal. Otherwise

remove a node (S, N s) from the top of the list.
Step 2. If Z s S Z return to Step 1. Otherwise let k = ISI. Compute a greedy

solution consisting of S plus K- k elements from N”. Let 2” denote its value.
Suppose the greedy algorithm generates the sets (S = Sk, . . . , SK). Compute
the linear programming upper bound

max q,

q s ~ (S ‘) + C pj(S‘)yj, t = k ,..., K-1,
j o N S - S ’

(4.1)

o ~ y , ~ l , j E N S .

Set Z” = max q.
Step 3. If Z s > Z, then 2 t Z s and I + SK. If Z” = z” or if Z s SZ go to

Step 4. Suppose N S =(it, . . . , j r } and pi , (S) a * * 3 pi , (S) . Add the nodes
Step 1, otherwise go to Step 4.

(S UGJ, N S -&, . . . , j t }) to the bottom of the list unless

I(S U {it)) U (N” -(it, . . . , jJ)\ < K, t = 1, . . . , r.

Assign each of these nodes an upper bound of z”. Go to Step 1.

An example of Algorithm 2 is given in the Appendix.
Note that after any iteration of the algorithm all nodes on the list are such

that IS1 = k or k + 1 for some k C K and that all nodes with IS1 = k are removed
before any nodes with IS(= k + 1.

We now consider the situation in which we have completed Step 3 for the
last node corresponding to IS(= q. At this point we have, for fixed K, evaluated
the function z 0(n4+l) times. Also Z = maxlsl,,, Zs = ZG(q), from the implicit
application of the q -enumeration plus greedy algorithm. Define ZLp(“) =

maxlsl,, zs, where 2” is the linear programming bound computed from (4.1).

Maximizing submodular set functions

Theorem 4

29 1

Proof. Theorem 3 implies that

€or each node (S, NS) with IS(= q. Alternatively,

From the first inequality of (4.1),

From the construction of nodes in Step 4 of the algorithm we have that
maxjENS pi(S) zs z(S)/q. Hence

Using (4.3) and ZG(q)2ZS in (4.2) yields

(4.4)

The theorem follows since (4.4) holds for every node (S , NS) with IS1 = q.

Theorem 4 shows that Algorithm 2 has properties similar to those of
Algorithm 1. For fixed K and with 0(nq+l) function evaluations, Algorithm 2
can be run down to level q, and we can guarantee

value of best feasible solution
linear programming upper bound

K-q K - q - 1 K - q 2 1 - - (K)(K-q) ’

As before, our result of [16] implies that no better performance guarantee can
be obtained with O(nq+’) values of z.

Theorem 4 is based on implicit enumeration of the sets S with I S (c q , which
is the reason for the particular subproblem selection rule of the algorithm. Its

292 G.L. Nemhauser, L.A. Wolsey

proof requires maxjcNS p i (S) a z (S) / q , which is the reason for the branching
rule of Step 4. Without these subproblem selection and branching rules, the
bound cannot be guaranteed.

We note that the linear programming problem (4.1) at node (S, N S) does not
necessarily contain any of the inequalities from previously solved subproblems.
Using these additional inequalities can improve the bounds for particular
problems but not the worst case bound of Theorem 4.

It is possible to do a similar analysis for the more conventional binary tree in
which the two sons of a node (S, N S) correspond to selecting and discarding a
j * EN’ such that pi*(S) = maxjENs pi(S). It is still, however, necessary to choose
nodes with S of minimum cardinality first to guarantee the bound of Theorem
4. In the binary tree, this approach requires 0(tP2) function values in the
worst case.

When Algorithm 2 is applied to the K-location problem, at node (S, N S) we
could solve the linear program

m n

Vs = max C C ciiqj,

2 q j = 1 , i = l , ..., m,
j = l

x i j - y j G O , i = l , ..., m, j E N S ,

x i j = O , i = l , ..., m, ~ E N - N ’ - s ,

x i j b O , i = l , ..., m, j E S U N S ,

Yj j E N S .

For every node (S, N s) , (4.1) is a relaxation of (4.5). This follows from the fact
that (4.1) is obtained from a Benders’ decomposition of (4.5) using only those
constraints generated from a subset of the dual extreme points of (4.5).
Therefore

so that Theorem 4 yields:

Theorem 5. For the K-location problem (1.2),

Maximizing submodular set functions 293

5. M g submodular functions subject to linear coastraints

Many submodular functions that arise in practice are not nondecreasing and
many problems have more complicated feasibility conditions than the cardinal-
ity constraint that we have supposed so far. Here we indicate how the
Eormulations and algorithms presented previously can be adapted to the
maximization of general submodular functions subject to linear constraints.

Proposition 2 [17]. A real-valued function z on the subsets of N is submodular
if and only if

or

Max(z(S): z submodular, 9’ = {S: AyS = by yi E (0, l}, j E N}) . (5.1)
SESP

Let U be an optimal solution to (5.1) and let g, + b y represent one of the
linear forms

(a) z (s)+ pj(s)yi- C aji(l-yj)
i e N - S j e S

where for j E S , a j S p j (S U U-(i}) , e.g., ai =pj (N- (i }) , or

where for j E N - S , yj*pj(SnU-(i}), e.g., -yj=pi(@).
Now consider the integer linear program

(5.2)

where g, + b y is one of the linear forms (a) or (b).

problem (5.1) since:
Precisely as in Section 2, we see that problem (5.2) is a reformulation of

294 G.L. Nemhauser, L.A. Wolsey

Theorem 6. (z (U) , y') is an optimal solution to (5.2) if and only if U is an
optimal solution to (5.1).

Algorithms 1 and 2 can be adapted to problem (5.2). This is straightforward
for Algorithm 1 and Theorem 2 suggests the use of the greedy algorithm in
selecting the intial constraints. When Ay = b is the simple cardinality constraint
xjeN yi = K, the greedy algorithm can be applied directly and, in fact, a
performance guarantee that is related to the one in Theorem 2 (but weaker)
can be obtained [17]. For a general set of linear constraints, the greedy
algorithm would have to be modified so that maximum improving elements were
selected sequentially subject to Ay = b. In this case no performance guarantee
is known.

We would propose a similar adaptation for Algorithm 2. The constraints for
the linear program of Step 2 would be obtained from the sets generated by the
modified greedy algorithm just mentioned. The branching rule of Step 4 would
be based on decreasing pj's subject to feasibility. This type of algorithm
resembles the implementation given in [14] of Benders' decomposition of
mixed integer programs since it synthesizes constraint generation, linear prog-
ramming relaxation and implicit enumeration.

6. Structure, Simplifications and applications

Here we show how simplified linearizations can be obtained when the
submodular functions have structure. We apply these ideas to the location
problem and the minimization of some quadratic 0-1 programs. (Unless stated
otherwise we use constraints of type (a) in (5.2).)

A (nondecreasing) submodular function z on the set N is said to be separable
if z = C i E I v i , where I is a finite set with \I \> 1, and each function v' is
(nondecreasing) submodular on N. Let pj(S) = v i (S UG})- v'(S).

Consider the formulation

q i S v i (S) + C pj(S)yj-zpj(N-fi})(l-yi), ViEI, V S s N , (6.1)

Ay = b,

Yj E {0,1},

j c N - S

j E N.

This is a new formulation of (5.1) as:

Theorem 7. (z (U) , y") is an optimal solution to (6.1) if and only if U is an
optimal solution of (5.1).

Maximizing submodular set functions 295

Proof. As in Lemma 1, ([I , y") is feasible in (6.1) if and only if y" is feasible
and t i s v i (U) , Vi E I.

The value of separability evidently depends to some extent on whether the
resulting functions u i have a simpler structure than z. We now examine two
cases, where the majority of the inequalities in formulation (5.2) are redun-
dant.

Let { c ~ } ~ ~ ~ , N = (1, . . . , n} be a set of nonnegative numbers and consider the
submodular function z* (S) = maxiEs ci, VS E N. Note that u(S) , the function
associated with the K-location problem, is a sum of such functions. Define
co= 0 and suppose, without loss of generality, that c,, 3 cnPl - b c1 3 co. Let
x+ = max(0, x).

Theorem 8. For the function z*, problem (5.2) can be formulated as

q s c , + c (Ci-cr)+yi, r=O ,..., n - 1 ,
jeN

Ay = b,

yj E {0,1), i E N.

Proof. Note first that the above formulation is a relaxation of (5.2), as the
inequalities in (6.2) can be obtained from the sets S o = { @ } , and Si ={i},
i = 1, . . . , n - 1 with ai = 0. Hence it suffices to show that (6, y") is infeasible if
t> z*(U). Let c, =maxi€" {ci}. From the rth inequality we obtain

6 s c,-1 + c (Ci - C,-l)+yY = C,-l + (c, - cr-l) = c, = z*(V).
jcN

As an immediate consequence of Theorem 8, letting cL a c k _ , 3 * * s a c . '1 b

ci, = 0 be an ordering of {cii}, j E N, we obtain the formulation of the K-location
problem (1.2) given by

...
max 2 qi,

i = l

q i s c i + 1 (cij-ci)+yj, i = l , ..., m, T = O ,..., n - I ,
ieN

yj E {0,1), j E N.

This formulation requires only mn linear inequalities to represent u(S). Again
we note that an appropriate application of Benders' procedure also leads to
this formulation. See [5] for alternative reformulations.

296 G.L. Nemhauser, L.A. Wofsey

A different simplification may occur by expressing the set function as a
polynomial in 0-1 variables. Define gO=z(g) and recursively g, =

z (S) - x ~ c s g p Let f (y) = C , s ~ gT n i . ~ Y i SO that z(S)=f(yS).
A representation of f in the form:

will be called a polynomial linearization of z . Clearly every set function has a
trivial polynomial linearization with T* = N, d;= gT, dT= 0, V j E N. We are
interested in cases where IT*(< n since:

Theorem 9. If z is submodular and has a polynomial linearization; the following
integer program is a reformulation of (5.1):

max rl,

~ G z (S) + c pj(S)yj- C aj(l-yj) ,

A y = b,

yj E {0,1), j E N.

V S G T " ,
(6.3) icN-S j e S

Proof. From Lemma 1 it suffices to show that (6, y') is infeasible in (6.3) if
5 > z (U) . Let S = U n T*, and consider the corresponding inequality. We
obtain

= c (d r + C d f) + c C d:

= c (d l + Z d f + c d f)

= C (d l + jcU C d:)=z(U).

(a s (U - S) n T * = g)
T s S j e S j eU-S T s S

T s S j e S jcU-S

TCUnT'

As an example we consider the quadratic 0-1 programming problem

min(cy + y'Qy : A y = b, y j E (0, l}, j E N) (6.4)

where qii = 0, qii = qii a 0, i # j . This example combines the use of separability,
polynomial linearization, and the choice of alternative inequalities of type (b).
Let

1 qijyi: A ~ = ~ , Y ~ E { ~ , I } , ~ E N ,
i : i # j I

Maximizing submodular set functions 297

and
4 = max{ C qiiyi : A y = b, yi E (0, l}, i E N].

i : i# j

Now consider the problem

yi E (0, l}, hi 3 0, j E N.

Theorem 10. y‘ is an optimal solution to problem (6.4) i f and only if (y‘, A”)
is an optimal solution to (6 3 , where

A y = (-4 + c q i j y p + (4 - m,)yF)t.
i: i # j

Proof. Consider the objective max(-cy - y’Qy). Let f(y) = -y’Qy. With the
given conditions on the {qii}, f is submodular, [17]. Taking f(y) =Cr=l f i (y)
with f’(y)= yj(-Ciziqijyi), we see that f is separable. Note that f’ has a
polynomial linearization with T* = u}. As IT*(= 1 Theorem 9 implies that
precisely two inequalities are required to linearize f’. Taking S = P, we obtain
the inequality q’ S 0. Taking S = (i} we obtain qi 6 -CiZi qiiyi - a j (l - yj)
where ai Cpj(U-(i}) and U is an optimal solution. Noting that pj(U-(i})=
-Cizi qijy?, we can take ai = -Mi, and the second inequality becomes

qj C - C qijyi +Mi(1 - Yj).
i# j

Now note that inequality 5.2(b) applied to f i (y) with S = N - (j } yields
pi (U - (i}) and mi a 0, the inequal- ,,j -= -yjyj, where yj Spj(U-(i}) . Since -mi

ity q’ S -mjyj dominates q’ C 0 and can be used in its place.
Hence we obtain the reformulation

max -cy+ C q’,
j c N

qi =s -mjyj, j E N,

q i ~ - C qijYi+4(1-yj), j E N ,
i : i # j

A y = b,

Yj E {0,11, i E N*

Now setting hi = -mjyj - q’, j E N, the result follows.

This formulation can also be obtained by the methods in [9].

298 G.L. Nemhauser, L.A. Wolsey

7. Conclusion

We have indicated how the structure of submodularity arises in combinator-
ial optimization problems, how it may be used in the design of algorithms (both
approximate and exact) and in the generation of problem reformulations. Our
point of view has been to use results on the behavior of heuristics to design
exact algorithms. From intermediate stages of these algorithms we obtain
performance guarantees on the optimal solution.

Other well-known problems to which these models are applicable include a
capacitated location problem [7], multiproduct, and even multi-level distribu-
tion systems, see for example [7,8] where Benders' algorithm was successfully
used, and the quadratic assignment problem [l, 11,131, a special case of the
quadratic 0-1 program. Furthermore the formulations that we have given here
do not exhaust the possibilities since other linearizations of submodular func-
tions can be constructed as well.

Appendix

We consider the K-location problem (1.1) with K = 3 and

C =

- 2 2 0 0 0 1 .
2 0 2 0 0 1
2 0 0 2 0 1
0 2 2 0 0 1
0 2 0 2 0 1
0 0 2 2 0 1

- 0 0 0 0 4 2 .

Applying the greedy algorithm to this problem, with ties broken by choosing
the lowest index element, yields the subsets So = 8, S' = {6}, S2 = (6, l}, S3 =
(6 , 1,2} and ZG"' = 13.

Algorithm 1
Initialization. Choose the sets S o , S', and S2 given by the greedy algorithm

to obtain the relaxed problem (see 3.1):
r)G(0) - --ax q

q

7 8 + 3 ~ 1 + 3 ~ 2 + 3 ~ 3 + 3 ~ 4 + 2 ~ , ,

r) =s 11 +2y,+2y,+2y,+2y,,

O+ 6 ~ 1 + 6 ~ 2 + 6 ~ 3 + 6 ~ 4 + 4 ~ 5 + 8 ~ 6 ,

f Yj=3,
j = l

y j~{O, l} , j = 1 , ..., 6.

Maximizing submodular set functions 299

The solution is y, = y, = y4 = 1, yi = 0, otherwise and qG“’ = 17. Note that

which is the bound given by Theorem 2.
Iterative Phase. R3 = {2,3,4}, 2(R3) = 12. Add the constraint

s 12+4y5+2y6

to (A.l) and re-solve. There are three optimal solutions, y2 = y3 = y5 = 1, yj = 0
otherwise, y2 = y, = y, = 1, yi = 0 otherwise, y, = y, = y5 = 1, yi = 0 otherwise,
and q4 = 16. Also z(R4) = 14. The constraints generated by these solutions are
respectively

q 14+2y1+2Y,+y6,
q c 14+2y,+2y3+ y6;

14+2yl+2y,+ y6.

These constraints are added successively in the next 3 iterations. We then
obtain the optimal solutions y , = y, = y, = 1, yi = 0 otherwise, y, = y3 = y, = 1,
yj = 0 otherwise, y, = y4 = y, = 1, yj = 0 otherwise and q7 = 15. Also z(R7) =
14. The constraints generated by these solutions are respectively

q 14+2y3+2y4+Y6,
q c 14 +2yZ+2Y4+ Y6,
77 c 14+2y2+ 2y3+ y6.

These constraints are added successively in the next three iterations and we
finally obtain q lo = 14, which verifies the optimality of selecting any two of the
first four columns and the fifth; i.e., the solutions produced in the last six
iterations of the algorithm.

As we noted in Section 3, Benders’ algorithm gives results identical to the
ones we have just given.

Algorithm 2
Initialization. The list consists only of (8, N). z = 0, I = 8.
Iterative Phase. We select (8,N) from the list, apply the greedy algorithm

and obtain Z O = 13. Next the linear programming relaxation of (A.l) is solved
and we obtain z0 = 17. Thus z = 13 and I = {1,2,6}.

We have p6(@) > ~ ~ ($ 3) = = ~ ~ ($ 4) = p4(@) > p5(@). The list consists of
((61, N - W) , ((11, N-{L 61), ((21, {3,4,5)), ((31, {4,51). Each of these nodes
has 2” = 17.

Select ((61, N-(6}) from the list. Set k = 1 and compute the greedy solution

300 G.L. Nemhauser, L.A. Wolsey

(6, 1,2} of value 2{6)= 13. Solve the linear program (see 4.1):

max q,

q s 8+3Yl+ 3Y2+ 3Y3+3Y4+ 2Ys,
q s 11 + 2y2+2y3+2y4+ 2ys,

f yj =2,
j = 1

0 s y j s 1 , j=1 , . . .) 5.

An optimal solution is q = 14, y, = y3 = 1, yj = 0 otherwise so that Zf6) = 14.

({2,6}, {3,4,5}), ({3,6}, {4,5}) ({4,6}, (5)) to the list. Each of these nodes has
2' = 14.

Select ({l}, N-{l, 6)) from the list. Set k = 1 and compute the greedy
solution {1,2,5} of value Z{')= 14. Solve the linear program

~1({6l) = ~2({6}) = ~ ~ ((6)) = p4({6))> pS({6N. We add ({1,63, N-{L 611,

max q>

'̂1 s 6+4Y,+4Y,+4Y4+4YS,
? < l o + +2y3+2y,+4ys,

f yj=2,
j=2

O S y j S l , j = 2 , . . . ,5 .

An optimal solution is q = 14, y3 = y4 = 1, yi = 0 otherwise so that Z{l) = 14.
We update the incumbent to I = {1,2,5} and Z = 14.

The problems generated from the nodes ({2}, {3,4,5}) and ({3}, {4,5}) also
give lower and upper bounds of 14. The remaining problems on the list have
upper bounds of 14 so the problem is solved.

Since our problem is a K-location problem, we could have solved (4.5)
instead of (4.1) for each node of the list. For the node (g, N) we obtain
y1 = yz = f, y3 = ys = 1, y4 = y6 = 0 and = 16, which is better than the bound
obtained from (4.1). However, for this example the same amount of enumera-
tion is required.

-

References

[l] E.M.L. Beale, Integer Programming, in: T.B. Boffey, ed., Proceedings of CP 77 (University of

[2] J.F. Benders, Partitioning procedures for solving mixed-variables programming problems,
Liverpool, 1977) 269-279.

Numer. Math. 4 (1962) 238-252.

Maximizing submodular set functions 30 1

[3] G. CornuCjols, M.L. Fisher and G.L. Nemhauser, Location of bank accounts to optimize
float: An analytic study of exact and approximate algorithms, Management Sci. 23 (1977)

[4] G. Cornukjols, G.L. Nemhauser and L.A. Wolsey, Worst-case and probabilistic analysis of
algorithms for a location problem, Oper. Res. 28 (1980) 847-858.

[5] G. CornuCjols, G.L. Nemhauser and L.A. Wolsey, A canonical representation of simple plant
locations problems and its applications, SIAM J. Algebraic and Discrete Methods 1 (1980)

[6] G. Dantzig, D.R. Fulkerson and S. Johnson, Solution of a large-scale travelling salesman
problem, Oper. Res. 2 (1954) 393-410.

[7] A.M. Geofion, How can specialized discrete and convex optimization methods be married,
in: P.L. Hammer, E.L. Johnson, B.H. Korte and G.L. Nemhauser, eds., Studies in Integer
Programming (North-Holland, Amsterdam, 1977) 205-220.

[8] A.M. Geoffrion and G.W. Graves, Multicommodity distribution system design by Benders’
decomposition, Management Sci. 20 (1974) 822-844.

[9] F. Glover, Improved linear integer programming formulations of nonlinear integer problems,
Management Sci. 22 (1975) 455-460.

[lo] M. Guignard and K. Spielberg, Algorithms for exploiting the structure of the simple plant
location problem, in: P.L. Hammer, E.L. Johnson, B.H. Korte and G.L. Nemhauser, eds.,
Studies in Integer programming (North-Holland, Amsterdam, 1977) 247-272.

[ll] L. Kaufman and F. Broeckx, An algorithm for the quadratic assignment problem using
Benders’ decomposition, European J. Oper. Res. 2 (1978) 207-211.

[12] A Land and S . Powell, Computer codes for problems of integer programming, Ann. Discrete
Math. 5 (1979) 221-269.

[13] E.L. Lawler, The quadratic assignment problem, Management Sci. 9 (1963) 586-599.
[14] C.E. Lemke and K. Spielberg, Direct search zero-one and mixed integer programming, Oper.

Res. 15 (1967) 892-914.
[15] T.L. Magnanti and R.T. Wong, Accelerating Benders’ decomposition: Algorithmic enhance-

ments and model selection criteria, CORE Discussion Paper 8003, Louvain-la-Neuve, Bel-
gium (January 1980).

[16] G.L. Nemhauser and L.A. Wolsey, Best algorithms for approximating the maximum of a
submodular set function, Math. Oper. Res. 3 (1978) 177-188.

[17] G.L. Nemhauser, L.A. Wolsey and M.L. Fisher, An analysis of approximations for maximiz-
ing a submodular set function-I, Math. Programming 14 (1978) 265-294.

[18] H.P. Williams, Experiments in the formulation of integer programming problems, Math.
Programming Studies 2 (1974) 180-197.

789-810.

26 1-272.

